Interface: AzureAISearchOptions<T>
Embeddings and documents are stored in an Azure AI Search index, a merge or upload approach is used when adding embeddings. When adding multiple embeddings the index is updated by this vector store in batches of 10 documents, very large nodes may result in failure due to the batch byte size being exceeded.
Type Parameters
• T extends R
Properties
chunkFieldKey?
optional
chunkFieldKey:string
Index field storing the node text
Defined in
packages/llamaindex/src/vector-store/azure/AzureAISearchVectorStore.ts:118
compressionType?
optional
compressionType:KnownVectorSearchCompressionKind
Defined in
packages/llamaindex/src/vector-store/azure/AzureAISearchVectorStore.ts:108
credentials?
optional
credentials:DefaultAzureCredential
|AzureKeyCredential
Defined in
packages/llamaindex/src/vector-store/azure/AzureAISearchVectorStore.ts:99
docIdFieldKey?
optional
docIdFieldKey:string
Index field storing doc_id
Defined in
packages/llamaindex/src/vector-store/azure/AzureAISearchVectorStore.ts:133
embeddingDimensionality?
optional
embeddingDimensionality:number
Defined in
packages/llamaindex/src/vector-store/azure/AzureAISearchVectorStore.ts:109
embeddingFieldKey?
optional
embeddingFieldKey:string
Index field storing the embedding vector
Defined in
packages/llamaindex/src/vector-store/azure/AzureAISearchVectorStore.ts:122
endpoint?
optional
endpoint:string
Defined in
packages/llamaindex/src/vector-store/azure/AzureAISearchVectorStore.ts:100
filterableMetadataFieldKeys?
optional
filterableMetadataFieldKeys:FilterableMetadataFieldKeysType
Defined in
packages/llamaindex/src/vector-store/azure/AzureAISearchVectorStore.ts:140
hiddenFieldKeys?
optional
hiddenFieldKeys:string
[]
List of index fields that should be hidden from the client. This is useful for fields that are not needed for retrieving, but are used for similarity search, like the embedding field.
Defined in
packages/llamaindex/src/vector-store/azure/AzureAISearchVectorStore.ts:139
idFieldKey?
optional
idFieldKey:string
Index field storing the id
Defined in
packages/llamaindex/src/vector-store/azure/AzureAISearchVectorStore.ts:114
indexClient?
optional
indexClient:SearchIndexClient
Defined in
packages/llamaindex/src/vector-store/azure/AzureAISearchVectorStore.ts:104
indexManagement?
optional
indexManagement:IndexManagement
Defined in
packages/llamaindex/src/vector-store/azure/AzureAISearchVectorStore.ts:105
indexMapping()?
optional
indexMapping: (enrichedDoc
,metadata
) =>T
(Optional) function used to map document fields to the AI search index fields
If none is specified a default mapping is provided which uses
the field keys. The keys in the enriched document are:
["id", "chunk", "embedding", "metadata"]
.
The default mapping is:
"id"
to idFieldKey"chunk"
to chunkFieldKey"embedding"
to embeddingFieldKey"metadata"
to metadataFieldKey
Parameters
• enrichedDoc: BaseNode
<Metadata
>
The enriched document
• metadata: Record
<string
, unknown
>
The metadata of the document
Returns
T
The mapped index document
Defined in
packages/llamaindex/src/vector-store/azure/AzureAISearchVectorStore.ts:156
indexName?
optional
indexName:string
Defined in
packages/llamaindex/src/vector-store/azure/AzureAISearchVectorStore.ts:103
key?
optional
key:string
Defined in
packages/llamaindex/src/vector-store/azure/AzureAISearchVectorStore.ts:101
languageAnalyzer?
optional
languageAnalyzer:string
Defined in
packages/llamaindex/src/vector-store/azure/AzureAISearchVectorStore.ts:107
metadataStringFieldKey?
optional
metadataStringFieldKey:string
Index field storing node metadata as a json string. Schema is arbitrary, to filter on metadata values they must be stored as separate fields in the index, use filterable_metadata_field_keys to specify the metadata values that should be stored in these filterable fields
Defined in
packages/llamaindex/src/vector-store/azure/AzureAISearchVectorStore.ts:129
searchClient?
optional
searchClient:SearchClient
<T
>
Defined in
packages/llamaindex/src/vector-store/azure/AzureAISearchVectorStore.ts:106
serviceApiVersion?
optional
serviceApiVersion:string
Defined in
packages/llamaindex/src/vector-store/azure/AzureAISearchVectorStore.ts:102
userAgent?
optional
userAgent:string
Defined in
packages/llamaindex/src/vector-store/azure/AzureAISearchVectorStore.ts:98
vectorAlgorithmType?
optional
vectorAlgorithmType:KnownVectorSearchAlgorithmKind
Defined in
packages/llamaindex/src/vector-store/azure/AzureAISearchVectorStore.ts:110